
1 Getting an estimate of V (b�)
Let

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

and let X be full rank with a rank of K.
We know that

V (b�) = �2(X 0X)�1;

and this is �ne if we know �2, but if we don�t where do we get an estimate of
it, and what does that do to our variance?
A natural estimator for �2 is the average of the square residuals, where

residuals are given by

e = Y �Xb�
= Y � PXY
= (IN � PX)Y
= MXY

where MZ is the "residual projection matrix" that creates the residuals from a
regression of something on Z:

MZ = I � Z(Z 0Z)�1Z 0 = I � PZ

The reason it is called a projection matrix is that it has 3 familiar properties:

1. MZ is symmetric

2. MZ is idempotent

3. MZ has a known rank: rank(MZ)=rank(I)-rank(Z)

Knowing that the residual vector can be written as a projection matrix times
Y is helpful when it comes to �guring out how the average of squared residuals
relates to �2.
First, we must establish that the residuals can be written in terms of ":

e = MXY =MXX� +MX"

= INX� �X(X 0X)�1X 0X� +MX"

= X� �X� +MX"

= MX":

That MXX� = 0 should not be surprising: what are the residuals from a re-
gression of X on X? Big fat zero.
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Consider the sum of squared residuals:

e0e;

and write it in terms of the residual projection matrix and Y :

e0e = "0M 0
XMX"

"0MY "

= "0"� "0PX":

The expectation of e0e can be written by using our knowledge of the variance
of ":

E [e0e] = E ["0"]� E ["0PX"]
= N�2 � rank(PX)�2

= (N �K)�2:

Why does E ["0PX"] = K�2? How much " could you predict with X. Well,
since X and " are uncorrelated, you can only pick up what regression does
mechanically. Consequently, with K columns in X, you could get K perfect
�ts of ".
Mathematically, we have

E ["0PX"] = E [tr ("
0PX")]

because "0PX" is a scalar,

E [tr ("0PX")] = trE [(PX""
0)]

because we can rearrange within a trace and because the trace is a linear oper-
ator,

trE [(PX""
0)] = tr (PXE [(""

0)]) = �2IN tr (PX) = K�
2;

because PX is a �xed matrix and because E [(""0)] = �2IN , and because trace=rank.
A consequence of the above is that we can de�ne an unbiased estimator s2

of �2 as

s2 = e0e=N �K
E
�
s2
�
= �2;

and de�ne an estimate of the variance of the OLS estimator as

bV (b�) =
e0e

N �K (X
0X)�1

= s2(X 0X)�1;

and this is an unbiased estimate of the variance of the OLS estimator. If you
divided by N instead of N�K, the estimator would only be consistent (unbiased
asymptotically), because asymptotically, N = N �K.
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2 Digression: What is the normal distribution?

The pdf of the normal distribution, and standard normal distribution, are

N(�; �2), f(x;�; �2) =
1

�
p
2�
e

(x� �)2

2�2 =
1

�
'

�
(x� �)
�

�

N(0; 1), f(x; 0; 1) = ' (x) =
1p
2�
e
�
1

2
x2

We can evaluate the expectation of any power of this random variable.
a chi-square distribution with J degrees of freedom, denoted �2J , is the sum

of J squared standard normals.
Why are people interested in Normals? Normals have some useful features.

A very useful one is that linear functions of normals are also normal.
Consider a normally distributed random vector x

x~N(�;�)

were � is a J�vector and � is a J � J symmetric positive de�nite covariance
matrix. This thing can be expressed in terms of J standard normal scalars as
follows:

��1=2 (x� �) ~

24 N(0; 1)
:::

N(0; 1)

35 :
Linear combinations of normals Ax+ b are distributed

Ax+ b~N(A0�+ b; A�A0);

which, since it is also a normal, is also completely speci�ed up to the expectation
of every power.
One can check that

��1=2 (x� �) = ��1=2x� ��1=2�~N
�
��1=2�� ��1=2�;��1=2���1=2

�
~N (0; IJ) ;

which matches up to the claim 2 equations up.
Also, (�nite-valued �nite-length vector-) functions of non-normal �nite-variance

random vectors have approximately normal limiting distributions. This means
that normal distributions show up a lot in asymptotic theory.

3 Where�s �: Con�dence Intervals

An �% con�dence interval for a parameter � is the smallest range such that
there is an �% probability that � lies in that range. Here, � is an unknown
�xed parameter (or parameter vector), and b� is our estimate of it. We will use
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the sampling distribution of b� to construct endpoints of the con�dence interval
for �. Those endpoints are random variables, and they center on b�.
We have been working with estimated coe¢ cient vectors (b�), which are ran-

dom variables, and we have learned some stu¤ about their sampling distribu-
tions. We have worked out the mean and variance of b�, e.g., when

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

and X is full rank with rank K, the sampling distribution of b� has
E
hb�i = �;

V
hb�i = �2(X 0X)�1:

There are many sampling distributions that could match these features.
To illustrate, consider a scalar b�. These moments could be matched with
N(�; �2P

X2
i
). A uniform distribution over the range a; b has a mean of (b+ a) =2

and a variance of (b� a)2 =12. Thus, a uniform over the range
�
� �

q
3�2P
X2
i

�
;�

� +
q

3�2P
X2
i

�
would also have a mean of � and a variance of �2P

X2
i
.

The fact that E
hb�i = � tells us to center our con�dence interval for � on b�.

A 95% con�dence interval for this �xed scalar � would be
hb� � 1:96q �2P

X2
i
; b� + 1:96q �2P

X2
i

i
if b� were distributed normally. We compute this by �nding the range of the nor-
mal distribution, centered on the mean, that covers 95% of the pdf. We would

say "there is a 95% coverage probability for � in the range
hb� � 1:96q �2P

X2
i
; b� + 1:96q �2P

X2
i

i
".

But, if b� were distributed uniformly, then its distribution would be uniform
over the range

�
� �

q
3�2P
X2
i

�
;
�
� +

q
3�2P
X2
i

�
. The 95% con�dence interval

for this �xed scalar � would just be the middle 95% of a range of that width,

centered on b�: h�b� � 0:95q 3�2P
X2
i

�
;
�b� + 0:95q 3�2P

X2
i

�i
. This is a di¤erent

con�dence band from that corresponding to the normally distributed version.
The point is that we need to know more about the distribution that just

the mean the variance to compute the con�dence band. We need to know
everything about the pdf, which is equivalent to knowing the value of every
moment of the random variable, not just the �rst two (mean and variance).

3.1 A Cheap Trick: Normally Distributed Disturbances

Suppose

Y = X� + ";

"~N(0N ; �
2IN );
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and X is full rank with rank K. The fact that the disturbances are independent
mean-zero normals, "~N(0; �2IN ), implies E [X 0"] = 0K and E [""0] = �2IN , so
the OLS estimator still satis�es unbiasedness and has the simple variance matrix:

E
hb�i = �;

E

��b� � ���b� � ��0� = �2(X 0X)�1:

But, now having assumed more than we did before, we get more than we got
before. Write out b� as a function of ":b� = (X 0X)�1X 0Y

= � + (X 0X)�1X 0"

is a linear combination of a normally distributed vector. Since, for any vector
x~N(�;�), (a+Ax) ~N(a+ �;A�A0), we have

b�~N �� + 0K ; (X 0X)�1X 0�2INX(X
0X)�1

�
; orb�~N ��; �2(X 0X)�1

�
:

If the disturbances are normally distributed, then b� is normally distributed.
If we know �2, then we have enough information to construct a con�dence
interval. If we don�t know �2, then we can still construct an unbiased estimate
of it, s2, and use that in place of �2 to construct the con�dence interval. The
con�dence band which uses the normal distribution and s2 in place of �2 would
only be valid asymptotically, because s2 = �2 only in the limit.

3.2 Another Cheap Trick: Central Limit Theorem

Suppose that

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

and X is full rank with rank K. The OLS estimator is linear combination
of the random vector ", and the length of b� does not grow with N : b� = � +
(X 0X)�1X 0". Consequently, one can invoke a central limit theorem: Sinceb� is a �nite length vector function of a �nite-variance random vector ", as
the length of " grows to in�nity, the second-order approximation of the vector
function b� converges to the normal distribution. Thus, as N gets large, b� looks
approximately normal, b�~approxN!1 N

�
�; �2(X 0X)�1

�
:

Here, we did not have to invoke normality of the disturbances. Rather, we
required the disturbances to have �nite variance, so that when you �add a lot
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of them up�, you still get something with �nite variance, and a Central Limit
Theorem then tells you that the summation goes to something that looks pretty
much like a normal.
It turns out that you can substitute in s2 for �2, and it does not change the

approximation of the limiting distribution, so thatb�~approxN!1 N
�
�; s2(X 0X)�1

�
:

These methods for constructing con�dence intervals allow us to get an idea
of where the true � is on the basis of our observed b� and its variance. However,
since in practise we don�t observe �2, we must use an estimate of it, usually
s2. Thus, we typically end up with a con�dence interval that is only valid
asymptotically, and possibly even then only approximately.

4 Constructing a test: Tests of Equalities

There are 3 steps:

1. First specify a Null Hypothesis, usually denoted H0, which describes a
model of interest. Usually, we express H0 as a restricted version of a more
general model. In the background, we have a model

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

where X is NxK and � is a K�vector, where interesting hypotheses can
be expressed as restrictions on �. We will consider 3 types of tests of
equalities: single linear, multiple linear, and general nonlinear. Tests of
equalities are fully speci�ed when you specify the Null hypothesis: the Null
is either true or not true, and you don�t care how exactly it isn�t true, just
that it isn�t true.

(a) A single linear test could be written as

R� + r = 0;

where R is 1xK and r is a scalar.

i. An exclusion restriction, e.g., that the second variable does not
belong in the model would have

R =
�
0 1 0 ::: 0

�
;

r = 0:

ii. A symmetry restriction, e.g., that the second and third variables
had identical e¤ects, would have

R =
�
0 �1 1 0 ::: 0

�
;

r = 0:
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iii. A value restriction, e.g, that the second variable�s coe¢ cient is
1, would have

R =
�
0 1 0 ::: 0

�
;

r = �1:

(b) A multiple linear test could be written as

R� + r = 0;

where R is JxK and r is a J�vector.
i. A set of exclusion restrictions, e.g., that the second and third
variables do not belong in the model, would have

R =

�
0 1 0 ::: 0
0 0 1 ::: 0

�
;

r =

�
0
0

�
:

ii. A set of symmetry restrictions, that the �rst, second and third
variables all have the same coe¢ cients, would have

R =

�
1 �1 0 ::: 0
0 1 �1 ::: 0

�
;

r =

�
0
0

�
:

iii. Given that we write the restriction as R� + r = 0 for both sin-
gle and multiple linear hypotheses, you can think of the single
hypothesis as a case of the multiple hypothesis.

(c) A multiple nonlinear test could be written as

c(�) = 0;

where c is a J�vector function of �.
i. A restriction that the product of the �rst and second coe¢ cients
equals 1 and the product of the third and fourth coe¢ cients
equals 1 would have

c(�) =

�
�1�2 � 1
�3�4 � 1

�
:

(d) Of course you can think of single- and multiple-linear hypotheses as
cases of the multiple nonlinear test.

2. Then, construct a test statistic, which is a random variable (because it is
a function of other random variables) with two features:
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(a) it has a known distribution under the Null Hypothesis (usually, nor-
mal or chi-square, t or F). Its distribution is known either because we
assume enough about the distribution of the model disturbances to
get small-sample distributions, or we assume enough to get asymp-
totic distributions.

(b) this known distribution may depend on data, but not on parameters
(this is called pivotality: a test statistic is pivotal if it satis�es this
condition).

3. Check whether or not the sample value of the test statistic is very far out
in its sampling distribution. If it is very far out, then you are left with 2
options: (1) the Null hypothesis is true, but you got a really weird draw
of " leading to a really weird value of the test statistic; or (2) the Null
hypothesis is false.

4.1 The Wald Test

A common test statistic, called the Wald Statistic, asks whether the hypothesis,
evaluated at the sample value of b�, is very far out in its sampling distribution.
The discrepancy vector, bd, is the sample value of the hypothesis, that is, the
value of H0 evaluated at the sample estimate of �, b�. Using the terminology
above, for a linear hypothesis,

bd = Rb� � r;
and for a nonlinear hypothesis,

bd = c�b�� :
Even if the hypothesis is true, we would not expect bd to be exactly zero, becauseb� is not exactly equal to �. However, if the hypothesis is true, we would expectbd to be close to 0. In contrast if the hypothesis is false, we�d have no real prior
about where we�d see bd.
The Wald Statistic is a random variable, which is a function of the data

and the Null hypothesis. The Wald test asks whether or not bd is very far
from zero, given the assumption that the null hypothesis is true. It does so by
creating the Wald Statistic, which has a known and pivotal distribution under
the Null hypothesis, and asking whether its value is very far out in the tails of
the distribution.
Consider a Wald Statistic for a multiple hypothesis R� � r = 0, so that

bd = Rb� � r:
To evaluate whether or not bd is very far from its hypothesized value of 0, we
need to �gure out its sampling distribution. Luckily, bd is a linear function of
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b�, and we know the mean and variance of b�:
E[b�] = �

V
hb�i = �2(X 0X)�1;

and so

E[bd] = E
h
Rb� � ri

V
hbdi = �2R(X 0X)�1R0;

and since under the Null Hypothesis, R� � r = 0, we can substitute that in to
get

E[bd] = 0

V
hbdi = �2R(X 0X)�1R0:

Unfortunately, this is not enough information to really pin down whether
or not our observed value of bd is very far out in the sampling distribution
of bd, because many di¤erent sampling distributions could have this mean and
variance. So, we need more.
Assume instead that

Y = X� + ";

"~N(0N ; �
2IN );

so that b�~N ��; �2(X 0X)�1
�
:

Then, bd~N(0; �2R(X 0X)�1R0)

under the Null Hypothesis. (Its distribution is unknown if the Null is not true,
because we wouldn�t know its mean.) This is enough information to �gure out
if bd is very far out in the tails of its sampling distribution.
There is a problem, though: bd is not a test statistic� its distribution is known,

but it is not pivotal (since it depends on parameters). Thus, we need to get
the parameters out of the sampling distribution.
Since bd is normally distributed, any linear combination of it is normally

distributed, and there is a particular linear combination that turns it into a
standard normal vector:

TWv =
1

�

�
R(X 0X)�1R0

��1=2 bd~N(0J ; IJ)
Since (X 0X)�1 is positive de�nite, R(X 0X)�1R0 is also positive de�nite, so the
"minus one-half" matrix of R(X 0X)�1R0 exists.
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TWv (for "Wald vector") could be used as a test statistic, because its dis-
tribution does not depend on any parameters. Unfortunately, it is comprised
of things that can deviate from zero in both directions, so we need a way to
aggregate it. Somehow we need to detect whether or not any element of Wv is
very far from zero.
The Wald Statistic is its sum-of-squares T 0WvTWv. It is distributed as the

sum of J squared normals (aka, �2J):

TW = T 0WvTWv =
1

�2
bd0 �R(X 0X)�1R0

��1 bd~�2J :
If we knew �2, we could compare the sample value of the Wald Statistic, TW ,
to the �2J distribution and ask whether or not it is far out in the tails of the
distribution.

4.2 How Far is Far?

How can we judge whether or not TW is far out in the distribution of the �2J?
There are 2 basic strategies, both based on the distinction between Type I and
Type II errors.

1. A Type I Error is when we reject the Null even though it is true. The
probability of a type I error is equal to the signi�cance level. (aka size).

2. A Type II Error is when we fail to reject the Null even though it is false.
The power of a test is the probability of making a Type II Error. The
power of a test varies with the true value of the parameter(s).

The �rst strategy is to choose in advance a tolerance for Type I errors. For
example, suppose we were willing to tolerate rejecting the Null 5% of the time,
even when it was true. This level of tolerance is usually called "alpha", and
we�d say � = 5%. Then, we would go out in the tails of the distribution to a
value far enough that only 5% of the probability remained in values larger, and
call this value the critical value. Then, we compare the sample value of the test
statistic to the critical value: if it is bigger, we reject the hypothesis; if not, not.
The second strategy instead evaluates the probability that a test statistic as

large or larger than the one observed would be drawn if the Null was true. This
is called the p-value of the test. If this p-value seems very small, we reject the
hypothesis; if not, not.
Because we are interested only in whether or not the equalities of the Null

Hypothesis are true or not true (and not in whether they are untrue in particular
directions), only the right-hand tail of the �2J distribution matters. This is
where big deviations of bd from its hypothesized value of 0, be they big negatives
or big positives, will show up.
So, consider

TW = 8
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for a hypothesis with J = 3 restrictions. Suppose we use the �rst strategy, and
pick an � of 5%. The 5% critical value for a �23 variable (which I just looked
up in a table) is 7:8. Compare TW = 8 to the critical value 7:8: it is bigger, so
we reject the Null hypothesis.
Suppose we use the second strategy, and ask what is the probability that a

�23 would be at least as big as 8? I just looked up that probability: it is 4.8%.
I�d say that�s low, and reject the Null.

4.3 But I don�t know �2!

Well, indeed, one typically does not know �2; instead we have an unbiased
estimator for it s2 = e0e=N�K. How does that �t in? Since s2 is asymptotically
equal to �2, the Wald Statistic behaves asymptotically just the same if you use
s2 or �2:

lim
N!1

1

s2
bd0 �R(X 0X)�1R0

��1 bd = 1

�2
bd0 �R(X 0X)�1R0

��1 bd~�2J :
So, if N is "pretty big", then you can use s2 in place of �2, and the test

statistic will follow a �2J distribution anyways. This is an asymptotic result,
and it may be irksome if you think your sample is quite far from in�nitely large.
When N is not big, then the Wald test using s2 is still pretty close to a �2J .

Since
1

�2
bd0 �R(X 0X)�1R0

��1 bd~�2J ;
we have that the Wald Test statistic is equal to the product of �

2

s2 and a �
2
J .

1

s2
bd0 �R(X 0X)�1R0

��1 bd = �2

s2
1

�2
bd0 �R(X 0X)�1R0

��1 bd = �2

s2
�2J

Unfortunately, we don�t know the small-sample distribution of �
2

s2 without as-
suming something about the distribution of ".

4.4 I Don�t Like Asymptotics and I Do Like Normality

4.4.1 Single Linear Tests: the �nite-sample t-test

Consider the Wald Statistic when we just have a single linear test, a linear model
and normal ":

Y = X� + ";

"~N(0; �2);

H0 : R� + r = 0:

The Wald Vector, which just has a single element in this case, is distributed
normally under the Null hypothesis if " is distributed normally:

TWv =
1

�

�
R(X 0X)�1R0

��1=2 bd~N(0; 1):
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If you use s in place of � to create a Wald vector T sWv (the superscript notes the
fact that we�re using s), you still have asymptotic normality by the argument
above:

T sWv =
1

s

�
R(X 0X)�1R0

��1=2 bd~N�>1N(0; 1):
4.4.2 The z-statistic and the t-statistic

In both of these cases (the Wald Vector with one restriction, using either � or
s), the test statistic follows a normal distribution as the sample size gets large.
For that reason, the Wald test in this case is often called a "z-test" (because
standard normal variables are often denoted "z"), and the Wald Vector (with
one restriction) is often called a "z-statistic", denoted Tz:

Tz = TWv =
1

�

�
R(X 0X)�1R0

��1=2 bd~N(0; 1);
or analogously for the asymptotic distribution using s instead of �:

T sz =
1

s

�
R(X 0X)�1R0

��1=2 bd~N�>1N(0; 1):
4.4.3 The �nite-sample t-statistic

In fact, we can say a bit more about the z-statistic T sz using s in place of �. It
is equal to �

s times something that is normally distributed:

T sz = T
s
Wv =

�

s
TWv =

�

s
Tz =

�

s
N(0; 1):

So, if we can �gure out the distribution of �s , then we might be able to work
this out.
Recall the de�nition of s:

s2 =
e0e

N �K ;

and consider the reciprocal of �s (that is,
q

s2

�2 ):r
s2

�2
=

r
1

N �K
(e0e)

�2

=

r
1

N �K
("0MX")

�2

=

r
1

N �K (v0MXv);

where v = "=�. Since "~N(0; �2), we have that

v~N(0; 1):
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Consider v0MXv:

v0MXv = v0 (IN � PX) v
= v0v � v0PXv
= �2N � v0PXv:

The quadratic form v0MXv is the sum of N squared normals minus a quadratic
form equal to the amount of v we can predict from X. If the v were observed,
we could predict K of them exactly with K columns of X, so PXv could equal
exactly v for K elements of v, and 0 for the rest. Alternatively, it could be a
linear combination of those. Thus, v0PXv is the sum of K squared normals, a
�2K , so we have

v0MXv = �
2
N � �2K = �2N�K :

The term v0MXv is equal to the sum of N �K squared normals, so

s

�
=

r
s2

�2
=

s
�2N�K
N �K ;

the square-root of a chi-square divided by its own degrees of freedom. Returning
to the z-statistic, we have

T sz =
�

s
Tz =

�

s
N(0; 1)

=
N(0; 1)q
�2N�K
N�K

:

This would seem to be useless, unless someone had tabulated the distribution
of a normal divided by a square root of a chi-square divided by its own degrees
of freedom.
Luckily, someone did. A dude named Gosset �gured it out, and called it

the "Student�s t" distribution, denoted tN�K , where N �K is the number of
degrees of freedom in the denominator. Fisher popularised the name. Instead
of calling the test as a "single linear Wald test vector using s", we call it a "t
Test Statistic", and denote it as

t� test =
�

s
N(0; 1)

=
N(0; 1)q
�2N�K
N�K

= tN�K ;

where "tN�K" means "t distribution with N � K degrees of freedom" which
means "a standard normal divided by the square root of a chi-square divided
by its own degrees of freedom".
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4.4.4 Multiple Linear Tests: the �nite-sample F-test

Consider the Wald Statistic when we have a multiple linear test, a linear model
and normally distributed ":

Y = X� + ";

"~N(0; �2);

H0 : R� + r = 0:

The Wald Statistic is

TW = T 0WvTWv =
1

�2
bd0 �R(X 0X)�1R0

��1 bd~�2J :
If we substitute in s2 for �2, to create T sW (the superscript notes the fact that
we�re using s), then we have

T sW =
1

s2
bd0 �R(X 0X)�1R0

��1 bd = �2

s2
TW

=
�2

s2
�2J :

We can rewrite the leading term in the Wald Statistic as follows

T sW =
�2

s2
�2J =

1

1

N �K

�
e0e

�2

��2J = �2J
�2N�K=N �K ;

by the same reasoning as for the Single Linear t-test. But, it feels a little
unbalanced, because we divide by the degrees of freedom in the denominator,
but not in the numerator. Consider dividing the numerator by its degrees of
freedom:

T sWald=J =
�2J=J

�2N�K=N �K ~FJ;N�K :

This ratio of chi-squareds divided by their own distribution is so commonly
seen that we (actually, a guy named Snedecor) named it F , with degrees of
freedom given by its numerator and denominator degrees of freedom. The F-
test statistic is equal to the Wald Test statistic (using s2 instead of �2) divided
by the number of restrictions being tested, and the F-test statistic is distributed
as an F distribution.

4.4.5 Normality and Finite-Sample Distributions

These results concerning the �nite-sample distributions of test statistics all rest
on the assumption of normality of the "�s. If you are not willing to specify the
distribution of the ", you can forget about �nite-sample distributions. If you
are willing to specify the distribution of the "�s, you may be able work out the
�nite-sample distribution of any test statistic, particularly those that are that
linear in the "�s.
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4.5 But " isn�t actually normal!

Well, indeed, one typically does not know " is normally distributed, but one
may believe that " has �nite variance. In this case, a central limit theorem
can be invoked: T 0Wv (the Wald vector) is a �nite-length (length J) vector
function of the random variable ", and so as the length of " grows to in�nity,
the distribution of T 0Wv is approximately equal to that of a vector of normals.
Consider a multiple linear hypothesis with a linear model and possibly non-

normal (but �nite variance) ":

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

H0 : R� + r = 0:

Here, " may be nonnormal (for example uniform) as long as " is �nite-variance.
Then, we have that the Wald vector (a �nite-length vector function of the data)
is asympotically approximately normal:

TWv =
1

�

�
R(X 0X)�1R0

��1=2 bd~approxN!1 N(0J ; IJ):

Since this vector is asymptotically approximately a vector of standard normals,
its inner product is asymptotically approximately a chi-square:

TW = T 0WvTWv =
1

�2
bd0 �R(X 0X)�1R0

��1 bd~approxN!1 �2J :

(The central limit theorem can be used even more weirdly: if J is really big, then
TW will approximate a normal distribution. That is, as chi-square distributions
get more degrees of freedom, adding together more and more squared standard
normals (which have �nite variance), the chi-square distribution will start to
look normal (big hump in the middle, thin tails).)
Even better, the second-order approximation is not a¤ected by replacing �2

with s2. This is because s2 is asymptotically equal to �2. Thus, we have that

T sW = T s0WvT
s
Wv =

1

s2
bd0 �R(X 0X)�1R0

��1 bd~approxN!1 �2J :

The Wald Statistic approximately follows the chi-square distribution as the
sample size gets really large, even if one uses s2.

4.6 Nonlinear Wald Tests

Consider a model in which we do not assume normality and have a set of J
nonlinear restrictions c(�) = 0 that we wish to test:

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

H0 : c(�) = 0:
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The discrepancy vector bd gives the distance between the sample value of the
hypothesis and its hypothesized value of 0:bd = c�b�� :
Since we have not assumed normality of the ", all we have for the distribution
of b� is a mean and variance:

E
hb�i = �;

V
hb�i = �2(X 0X)�1:

Application of the delta-method allows us to calcuate the mean and variance of

the nonlinear functions c
�b��:

E
h
c
�b��i = E

h
c
�
E
hb�i�i = E [c (�)] = 0;

V
h
c
�b��i = (r�c (�))0 V

hb�ir�c (�)0 = �2r�0c (�) (X 0X)�1
�
r�0c (�)

�0
;

where r�0c (�) is the matrix of derivatives of the vector-function c(�) with
respect to the row-vector �0 (each row of r�0c (�) gives the derivatives of an
element of c(�) with respect to �).

Then, if V
h
c
�b��i is �nite, we can use an approximate asympototic result

by applying a central limit theorem:

c
�b�� ~approxN!1 N

�
0J ; �

2r�0c (�) (X 0X)�1
�
r�0c (�)

�0�
:

Since b� goes to � asymptotically, we can replace r�0c (�) with r�0c�b��:
c
�b�� ~approxN!1 N

�
0J ; �

2r�0c
�b�� (X 0X)�1

�
r�0c

�b���0� :
Now, we use this information to create the Wald Statistic. Premultiplying

the sample value of the hypothesis by the minus-one-half matrix of its variance
gives the Wald Vector distributed as a vector of standard normals:

TWv =
1

�

�
r�0c

�b�� (X 0X)�1
�
r�0c

�b���0��1=2 c�b�� ~approxN!1 N (0J ; IJ) :

Finally, we take the inner product of this to create the Wald Statistic

TW =
1

�2
c
�b��0�r�0c�b�� (X 0X)�1

�
r�0c

�b���0��1 c�b�� ~approxN!1 �
2
J :

Since this is an approximate asymptotic result, it also works with s instead of
�:

TW =
1

s2
c
�b��0�r�0c�b�� (X 0X)�1

�
r�0c

�b���0��1 c�b�� ~approxN!1 �
2
J :
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4.6.1 How to Get Any Wald Test You Want

Consider a model in which we do not assume normality and have a 1 nonlinear
restriction �2 = 0 that we wish to test:

Y = X� + ";

E [X 0"] = 0K ;

E [""0] = �2IN ;

H0 : �2 = 0:

Since r�0c (�) = 2�, so

TW =
1

s2
c
�b��0�r�0c�b�� (X 0X)�1

�
r�0c

�b���0��1 c�b��
=

1

s2
b�2 �2b�(X 0X)�12b���1 b�2

=
1

4s2
b�2(X 0X)~approxN!1 �

2
1:

This nonlinear hypothesis has a Wald Test statistic whose distribution is known
under the Null Hypothesis. That is nice.
However, there is a not-nice feature to this. The restriction �2 = 0 is

equivalent to the linear restriction � = 0, which has a Wald Test

TW =
1

s2
bd0 �R(X 0X)�1R0

��1 bd
=

1

s2
b� �(X 0X)�1

��1 b�
=

1

s2
b�2(X 0X)~approxN!1 �

2
1;

because R = 1 and bd0 = b�. The two test statistics are distributed approximately
asympototically �21, but one is a quarter as large as the other. If you want to
not reject, use H0 : �

2 = 0 rather than H0 : � = 0. Hypotheses such as �
3 = 0

would shrink the test statistic even further.

4.7 Goodness of Fit

Since errors are random variables, sums of squared errors (SSR) are random
variables. So, we use the �t of a regression (SSR) as a test statistic. Consider
the model

Y = X� + ";

"~N(0N ; �
2IN )

H0 : R� + r = 0;
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and now, instead of worrying about the sampling distribution of b�, we try to
�gure out the sampling distribution of

SSR =
NX
i=1

(ei)
2

where
ei = Yi �Xib� =MXY =MX":

Goodness of �t could be compared by comparing the SSR when we impose the
Null compared to SSR when we don�t impose the Null.
This is di¤erent from the spirit of a Wald Test, because to do a Wald Test,

you don�t have to estimate under the restriction that the Null is true. Rather,
with a Wald Test, you estimate a general model and ask how large is the dis-
crepancy from the Null. Wald Tests are based on the sampling distribution
of the estimated parameters; Goodness of Fit tests are based on the sampling
distribution of the SSRs.
The Goodness of Fit test has 2 steps:

1. First, you estimate under the Null, and call the sum of squared errors
from this as SSRR (the R is for "restricted").

2. Then, you estimate under the alternative, and call the sum of squared
errors from this as SSRU (the U is for "unrestricted").

Notice that under the Null, SSRR and SSRU are driven by the same value
of �, because under the Null the restrictions are true. This means that we
might consider using

SSRR � SSRU
as part of a test statistic because its expectation under the Null is driven solely
by " (where the true parameter vector is �), and not by di¤erences in the
underlying parameters. We know that it must be weakly positive because the
unrestricted model contains the restricted model as a possibility. How is this
thing distributed?
If we knew �2, we would have that

SSRU
�2

=
e0e

�2
;

e0e

�2
=

"0MX"

�2

=
"0"

�2
� "

0PX"

�2

= v0v � v0PXv;
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where v~N(0; 1). Then, we have sums of squared standard normals, aka chi-
squared random variables.

v0v � v0PXv = �2N � "0PX"
= �2N � �2K
= �2N�K :

Here, "0PX" is distributed as a �2K because PX" can get exactly K perfect �ts
of ", so it is the sum of squares of K of the "�s. So,

SSRU=�
2~�N�K :

What about SSRR? By the same reasoning,

SSRR=�
2 = v0v � v0fPXv;

where fPX is the projection of X subject to the restrictions H0 : R� + r = 0.
This projection does not really have K columns in its X matrix because J linear
restrictions are imposed on the parameters. Thus, fPXv could have K � J
perfect �ts (J restrictions is like having J less parameters to freely choose).
Consequently,

v0fPXv~�2K�J ;
and,

SSRR=�
2 = v0v � v0fPXv;
= �2N � �2K�J
= �2N�K+J

Now, we can construct a Goodness of Fit test statistic:

SSRU � SSRR
�2

~�2J :

This is all good if we know �2: SSRU�SSRR

�2 is distributed as a chi-square.
Even if we don�t know �2 , we can use s2 in place of �2 :

s2 =
1

N � k

NX
i=1

(ei)
2
= SSRU= (N �K) :

This object converges in distribution to a spike on 1. Then, we can use the
asymptotic distribution:

SSRU � SSRR
s2

~N�>1�
2
J :

Above, we ignore the sampling variation in the denominator, treating it
like a constant asymptotically. This is a weird thing to do: we have sums of
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squared normals on top and on bottom, but we ignore the sampling variation
of the bottom. Alternatively, we can model the sampling distribution of the
denominator:

SSRU � SSRR
s2

=
�2

s2
SSRU � SSRR

�2

=
�2

s2
�2J

=
�2J
s2=�2

;

so that we see that the test statistic using s2 equals the test statistic using �2

(which is a chi-square) divided by s2=�2. We�ve seen s2=�2 before: it is equal
to a �2N�K=N �K, so

SSRU � SSRR
s2

~
�2J

�2N�K=N �K :

The numerator is a chi-square not divided by its degrees of freedom, so if we
divide it by its degrees of freedom, we get a ratio of chi-squares divided by their
degrees of freedom, also known as an F :

(SSRR � SSRU ) =J
s2

=
�2J=J

�2N�K=N �K ~FJ;N�k:

4.8 Inequality Tests: Single hypotheses

These strategies both depend on whether or not we care about deviations from
the Null hypothesis in both directions, or just in one-direction. Consider a
single linear hypothesis

H0 : R� + r = 0;

where all interesting deviations are negative. For example, if we were testing
whether or not an increase in price led to a decrease in demand, we might
reasonably think that �, the coe¢ cient on price, could be zero or negative, but
not positive. Then, R = [1 0::: 0], r = 0 (if the price is the �rst regressor), and
we have alternatives only in one direction

H0 : R� + r = 0;

HA : R� + r < 0:
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